PVP20

Department of Freshman Engineering

Differential Equations and Vector Calculus

Course			20BS1201		Yea	Year		I		Sem	Semester		II		
Code															
Course			Basic Science		Brai	Branch		ECE		Cou	Course Type		Theory		
Category					<u> </u>										
Credits			3		_	L-T-P			0-0		equisite	S	Nil		
Continuous			30			Semester End		70			Total		100		
Internal					Eval	Evaluation				Mar	Marks				
Evaluation Course Outcomes															
Unon	Upon successful completion of the course, the student will be able to														
CO1		Understand the basic concepts of differential equations and vector calculus (L2).													
CO2	_														
		pply different methods to solve differential equations (L3).													
CO3	Apply the differential operator to calculate the divergence and flux of vector point function										nctions				
(L3).															
CO4	Analyse the given differential equation to find the solution (L4).														
CO5	Ca	Calculate work done and flux by applying vector integral theorems (L4).													
CO6	Ap	Apply the concepts of differential equations and vector calculus to the given problem and submi												submit	
	a report (L3).														
	Contribution of Course Outcomes towards achievement of Program Outcomes &														
										dium, 1	_				
	PO	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1													1		
CO2	3								2	2			1		
CO3	3								2	2			1		
CO4		3											1		
CO5		3											1		
CO6	3								2	2			1		
								abus							
Unit N	t No. Syllabus 1 Ordinary Differential Equations Of First order and First degree:									Mapped CO's					
1												_			
	Exact differential equations, Equations reducible to exact equations,								tions,	CO1,CO2,					
	orthogonal trajectories in Cartesian and polar coordinates. Applications : Newton's Law of cooling, Law of Natural growth and decay.										CO4,CO6				
2															
2					-		_				r D, rul		CO1,C	Ο2,	
	finding complementary function, inverse operator, rules for finding particula integral, method of variation of parameters.								uculai	CO4,CO6					
3									nartial	differer	ntial equ	ations			
3					_				-		_		CO1,CO2,		
	Linear equations of first order, Non-Linear equations of first order, Charpit's method.								arpit s	CO4,CO6					
4				entiati	on: So	calar aı	nd vec	tor noi	nt fund	ctions v	ector o	perator			
								_			_		(01,003,		
		del, del applies to scalar point functions-Gradient, del applied to vector point functions- Divergence and Curl.												CO5,CO6	
5				_			ral, su	rface	integra	l, volui	ne inte	gral,			
	5 Vector Integration: Line integral, surface integral, volume integral, Green's theorem in the plane, Stoke's theorem, Divergence theorem (All												CO1,C	O3,	
1		theorems without proof).											CO5,CO6		

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

Applications: work done, flux.								
Learning Resources								
Text Books								
1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.								
2. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.								
Reference Books								
1 P.K. Ioin and S.P.K. Ivangar, Advanced Engineering Mathematics, 3/a	Alpha science							

1. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 3/e, Alpha science International Ltd,2002

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/105/111105121/
- 2. https://nptel.ac.in/courses/111/105/111105122/
- 3. https://nptel.ac.in/courses/111/107/111107108/
- 4. http://202.53.81.118/ -> PVPSIT FED Moodle